Atrium96.ru

Кузовной ремонт авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулировка частоты вращения пуска двигателя; Audi 100

Регулировка частоты вращения пуска двигателя — Audi 100

6.6.1 Регулировка частоты вращения пуска двигателя Audi 100

2. Снять воздушный фильтр (см. подраздел 6.1.2).

4. Подсоединить контрольный тахометр в соответствии с инструкцией завода-изготовителя.

5. Запустить двигатель и оставить работать на холостом ходу.

6. Проверить частоту вращения по контрольному тахометру, она должна быть 3500 мин –1 . При необходимости отрегулировать частоту вращения, сгибая или разгибая вилку рычага привода дроссельной заслонки первой камеры.

7. Снять карбюратор и щупами проверить приоткрывание дроссельной заслонки первой камеры, которое должно быть на моделях с механической трансмиссией (1,3±0,1) мм, а на моделях с автоматической трансмиссией (1,5±0,1) мм. При необходимости отрегулировать приоткрывание дроссельной заслонки, сгибая/ сжимая или разгибая/ разжимая вилку рычага.

6.6.1 Регулировка частоты вращения пуска двигателя Audi 100

Прямой пуск

Что такое прямой пуск

Как следует из названия, прямой пуск означает, что электродвигатель включается прямым подключением к источнику питания при номинальном напряжении. Прямой пуск (direct-online starting — DOL) применяется при стабильном питании двигателя, жестко связанного с приводом, например насоса.

Прямой пуск от сети DOL является самым простым, дешёвым и самым распространённым методом пуска. Кроме того, он даёт наименьшее повышение температуры в электродвигателе во время включения по сравнению со всеми другими способами пуска. Если поступающий ток от сети не имеет специальных ограничений, такой метод является наиболее предпочтительным.

На электростанциях в разных странах действуют различные правила и нормы; например, в Дании для трёхфазных электродвигателей с током при заторможенном роторе около 60 А нельзя всегда использовать прямой пуск от сети. В таких случаях, очевидно, необходимо выбирать другие методы пуска. Электродвигатели, предназначенные для частых пусков/отключений обычно оборудованы системой управления, которая состоит из контактора и устройства защиты от перегрузок (термореле).

Для электродвигателей небольшой мощности, работающих без частых пусков/остановов, необходимо самое простое пусковое оборудование, чаще всего это расцепитель, управляемый вручную. Напряжение подается непосредственно на клеммы электродвигателя. Для небольших электродвигателей пусковой момент будет составлять от 150 до 300 % от номинального, тогда как пусковой ток будет составлять от 300 до 800 % от номинального значения или даже выше.

Прямой пуск

Механизмы подъема. Преобразователь частоты серии EI-9011 в частотно регулируемом приводе

Механизмы подъема груза с применением электропривода устанавливаются на всех грузоподъемных машинах. Их общая конструкция характерна не только для кранов и лифтов, но и для машин специального назначения, в которых направление вектора приложения силы от действия нагрузки может совпадать с направлением вращения ротора электродвигателя.

Самый простой вариант механизма — грузовая лебедка. Это машина для подъема грузов с помощью каната, навиваемого на барабан с зацепом в виде крюка.

1.jpg

Основная кинематическая схема механизма подъема

Электропривод механизма подъема

Самый распространенный электродвигатель для механизма подъема — это асинхронный электродвигатель с короткозамкнутым ротором. При простоте управления (прямой пуск) у него есть существенные недостатки:

  • большие пусковые токи,
  • большие динамические нагрузки при запуске.

Устранить их в какой-то мере позволяет применение электродвигателя с фазным ротором. Но появляется новый недостаток — громоздкое силовое коммутационное оборудование.

Наиболее высоких эксплуатационных показателей позволяет достичь применение частотно-регулируемого привода, а именно:

  • снизить пусковые токи до уровня номинального,
  • снизить динамические нагрузки до уровня расчетных,
  • плавно регулировать скорости вращения в широком диапазоне.

Применение ПЧ серии EI-9011 для управления механизмом подъема

При выборе преобразователя частоты «Веспер» прежде всего надо учитывать тип редуктора механизма подъема. Различают 2 основных типа:

  • цилиндрический,
  • червячный.

Различие этих редукторов в том, что цилиндрический — двухсторонний, т. е. крутящий момент передается как от входного вала к выходному, так и наоборот — от выходного вала к входному; а червячный — односторонний. Последний устанавливают реже — из-за низкого КПД и повышенного износа.

В механизмах подъема с червячным редуктором возможно применение любого преобразователя частоты «Веспер» серий EI, E3, E4, E5. Но применение ЧРП в таком механизме мы рассматривать не будем — из-за отсутствия особенностей его работы.

Для механизмов подъема с цилиндрическими редукторами рекомендуется применять преобразователи частоты серии EI-9011, благодаря наличию у них:

  1. Мощного центрального процессора, который позволяет создать программное обеспечение для векторного режима с высокими точностными характеристиками и широким функционалом.
  2. Двух векторных режимов: в разомкнутой системе и с датчиком обратной связи по скорости.
  3. Широкого диапазона регулировки скорости: 1/100 в обычном векторном режиме и 1/1000 — в векторном с обратной связью.
  4. Векторного режима с обратной связью, который обеспечивает М=100% практически при нулевой скорости вращения двигателя.
Читайте так же:
Как регулировать постоянный ток тиристором

Ранее приведенная кинематическая схема механизма подъема оптимальна для управления от преобразователя частоты EI-9011. В составе механизма есть тормозное устройство (3), конструктивно не связанное ни с электродвигателем, ни с редуктором. Для него доступно независимое управление электрическим сигналом.

С преобразователем частоты структура будет иметь следующий вид:

2.jpg

Рассмотрим простейшую схему управления приводом грузовой лебедки с электродвигателем небольшой мощности — до 8 кВт:

3.jpg

Для такого применения достаточно, как правило, режима работы ПЧ «Векторный в разомкнутой системе».

Почему именно он? Потому что позволяет управлять вращением двигателя в более широком диапазоне скоростей, чем скалярный режим. Это особенно важно на нижней границе диапазона, где требуется обеспечить номинальный момент на валу двигателя при возможной минимальной скорости вращения. Чем меньше значение выходной частоты ПЧ, при которой двигатель начинает вращение и имеет номинальную нагрузку на своем валу, тем меньше динамическая (ударная) нагрузка на все части механизма подъема.

Программирование ПЧ серии EI-9011 для управления механизмом подъема

Для программирования ПЧ необходимо подключить его к сети силового электропитания 3Ф, 380 В, 50 Гц. Соответственно, и электродвигатель, с которым предполагается работа, тоже следует подключить к ПЧ. Программирование производится с собственного пульта управления.

Векторный режим работы предусматривает обязательную автонастройку ПЧ с применяемым электродвигателем. Проводить ее следует при каждой замене двигателя.

Важное примечание: в процессе автонастройки ПЧ определяет ряд параметров двигателя во время вращения последнего. Поэтому для корректного определения параметров вал двигателя должен быть свободным — на нем не должно быть лишней присоединенной массы.

После подачи напряжения питания в основном меню ПО надо выбрать раздел «Инициализация». В этом разделе:

  • Выполнить инициализацию (возврат значений всех параметров к заводским).
  • Выбрать режим работы — «Векторный в разомкнутой системе».
  • Определить уровень доступа к параметрам — «Расширенный».

Выбор других разделом меню и параметров производится аналогично.

Программирование можно выполнить и с помощью пульта управления ПЧ. Вся информация выводится на дисплей пульта в доступном виде и с комментариями на русском языке.

Следующий шаг: в основном меню ПО надо выбрать раздел «Автонастройка». В этом разделе следует выполнить все указания по вводу значений параметров двигателя и запустить процесс автонастройки. Если после его завершения на дисплее пульта управления нет сообщений об ошибках, следует перейти к программированию.

Далее в основном меню ПО надо выбрать раздел «Программирование». Перечень его параметров определяется следующими условиями:

  • Управление работой ПЧ (человек или АСУ).
  • Управление работой механизма со стороны ПЧ.

Для рассматриваемого варианта применения алгоритм работы и управления будет следующим:

При подаче команды движения вверх или вниз ПЧ выдает команду на отключение тормоза (размораживает механизм), а затем начинает вращение двигателя с минимальной частоты. В процессе работы лебедки можно регулировать скорость вращения и, соответственно, линейную скорость перемещения зацепа с грузом, выбирая оптимальную.

Вернемся к электрической схеме внешних подключений к ПЧ.

Клеммы 1 и 2 имеют фиксированные функции пуска в прямом и обратном направлении вращения соответственно.

После подачи питания на ПЧ вид управления — дистанционный: световые индикаторы УПР и РЕГ светятся. За это состояние отвечают параметры b1-02 и b1-01 соответственно, т.е. ПЧ уже настроен на внешние команды «ПУСК» и «УПРАВЛЕНИЕ СКОРОСТЬЮ».

Управление тормозом лебедки будет выполнять многофункциональный дискретный выход: клеммы 9-10. К началу вращения, после подачи команды «ПУСК», контакты внутреннего реле замыкают клеммы 9-10 и обеспечивают подачу сигнала управления тормозной системой лебедки. Такой режим обеспечивает функция дискретного выхода «Во время вращения».

В сочетании с режимом торможения постоянным током при пуске можно создать момент на валу двигателя при минимальной выходной частоте, при котором не будет срыва управления, и динамические нагрузки будут минимальными.

Процесс торможения постоянным током при пуске определяется параметрами:

  • В2-01 — частота включения постоянного тока торможения.
  • В2-02 — уровень тока торможения.
  • В2-03 — время торможения постоянным током при пуске.

При подаче команды «ПУСК» включается торможение двигателя постоянным током, но тормоз еще не отключен. В течение времени торможения происходит предварительное намагничивание двигателя, и к моменту отключения тормоза на его валу уже создан начальный момент. Это поясняют следующие временные диаграммы:

Читайте так же:
Как регулировка фар vectra b

4.jpg

При опускании груза направление вращения вала двигателя совпадает с направлением вектора силы, которая определяется массой груза, и эта сила пытается увеличить скорость вращения вала двигателя. Таким образом, двигатель переходит в генераторный режим работы.

5.jpgЭДС, которая вырабатывается двигателем в таком режиме, поступает в ПЧ, повышая напряжение на звене постоянного тока. Чтобы исключить аварийные остановки привода из-за перегрузки по напряжению, предусмотрен тормозной резистор. Он подключается к звену постоянного тока, когда напряжение ЗПТ достигает критического значения и рассеивает в тепло излишек электроэнергии.

Обобщая вышесказанное, можно составить минимальный список параметров с конкретными значениями для программирования режимов работы и управления ЧРП грузовой лебедки:

  • А1-03=2220,
  • А1-02=2,
  • А1-01=4,
  • В2-01=0,5,
  • В2-02=50.0,
  • В2-03=1.0,
  • Н2-01=37.

Рассмотренный пример ЧРП грузовой лебедки с применением ПЧ «Веспер» серии EI-9011 можно использовать как базовый — для проектирования более сложных механизмов подъема, с улучшенными эксплуатационными характеристиками.

Устройство плавного пуска электродвигателя. Как это работает.

Устройство плавного пуска электродвигателя. Как это работает.

Устройство плавного пуска — электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

Назначение

Управление процессом запуска, работы и остановки электродвигателей. Основными проблемами асинхронных электродвигателей являются:

  • невозможность согласования крутящего момента двигателя с моментом нагрузки,
  • высокий пусковой ток.

Во время пуска крутящий момент за доли секунды часто достигает 150-200%, что может привести к выходу из строя кинематической цепи привода. При этом стартовый ток может быть в 6-8 раз больше номинального, порождая проблемы со стабильностью питания. Устройство плавного пуска позволяют избежать этих проблем, делая разгон и торможение двигателя более медленными. Это позволяет снизить пусковые токи и избежать рывков в механической части привода или гидравлических ударов в трубах и задвижках в момент пуска и остановки двигателей.

Принцип действия устройство плавного пуска

Основной проблемой асинхронных электродвигателей является то, что момент силы, развиваемый электродвигателем, пропорционален квадрату приложенного к нему напряжения, что создаёт резкие рывки ротора при пуске и остановке двигателя, которые, в свою очередь, вызывают большой индукционный ток.

Софтстартеры могут быть как механическими, так и электрическими, либо сочетать то и другое.

Механические устройства непосредственно противодействуют резкому нарастанию оборотов двигателя, ограничивая крутящий момент. Они могут представлять собой тормозные колодки, жидкостные муфты, магнитные блокираторы, противовесы с дробью и прочее.

Данные электрические устройства позволяют постепенно повышать ток или напряжение от начального пониженного уровня (опорного напряжения) до максимального, чтобы плавно запустить и разогнать электродвигатель до его номинальных оборотов. Такие УПП обычно используют амплитудные методы управления и поэтому справляются с запуском оборудования в холостом или слабо нагруженном режиме. Более современное поколение УПП (например, устройства ЭнерджиСейвер) используют фазовые методы управления и потому способны запускать электроприводы, характеризующиеся тяжелыми пусковыми режимами «номинал в номинал». Такие УПП позволяют производить запуски чаще и имеют встроенный режим энергосбережения и коррекции коэффициента мощности.

Выбор устройства плавного пуска

ustroystvo_plavnogo_puska.jpg

При включении асинхронного двигателя в его роторе на короткое время возникает ток короткого замыкания, сила которого после набора оборотов снижается до номинального значения, соответствующего потребляемой электрической машиной мощности. Это явление усугубляется тем, что в момент разгона скачкообразно растет и крутящий момент на валу. В результате может произойти срабатывание защитных автоматических выключателей, а если они не установлены, то и выход из строя других электротехнических устройств, подключенных к той же линии. И в любом случае, даже если аварии не произошло, при пуске электромоторов отмечается повышенный расход электроэнергии. Для компенсации или полного устранения этого явления используются устройства плавного пуска (УПП).

Как реализуется плавный пуск

Чтобы плавно запустить электродвигатель и не допустить броска тока, используются два способа:

  1. Ограничивают ток в обмотке ротора. Для этого ее делают состоящей из трех катушек, соединенных по схеме «звезда». Их свободные концы выводят на контактные кольца (коллекторы), закрепленные на хвостовике вала. К коллектору подключают реостат, сопротивление которого в момент пуска максимальное. По мере его снижения ток ротора растет и двигатель раскручивается. Такие машины называются двигателями с фазным ротором. Они используются в крановом оборудовании и в качестве тяговых электромоторов троллейбусов, трамваев.
  2. Уменьшают напряжение и токи, подаваемые на статор. В свою очередь, это реализуется с помощью:
Читайте так же:
Ремонт и регулировка карбюратора к 151 пекар

а) автотрансформатора или реостата;

б) ключевыми схемами на базе тиристоров или симисторов.

Именно ключевые схемы и являются основой построения электротехнических приборов, которые принято назвать устройствами плавного пуска или софтстартерами. Обратите внимание, что частотные преобразователи так же позволяют плавно запустить электродвигатель, но они лишь компенсируют резкое возрастание крутящего момента, не ограничивая при этом пускового тока.

upp_shema.jpg

Принцип работы ключевой схемы основывается на том, что тиристоры отпираются на определенное время в момент прохождения синусоидой ноля. Обычно в той части фазы, когда напряжение растет. Реже – при его падении. В результате на выходе УПП регистрируется пульсирующее напряжение, форма которого лишь приблизительно похожа на синусоиду. Амплитуда этой кривой растет по мере того, как увеличивается временной интервал, когда тиристор отперт.

Критерии выбора софтстартера

По степени снижения степени важности критерии выбора устройства располагаются в следующей последовательности:

  • Мощность.
  • Количество управляемых фаз.
  • Обратная связь.
  • Функциональность.
  • Способ управления.
  • Дополнительные возможности.

Главным параметром УПП является величина Iном – сила тока, на которую рассчитаны тиристоры. Она должна быть в несколько раз больше значения силы тока, проходящего через обмотку двигателя, вышедшего на номинальные обороты. Кратность зависит от тяжести пуска. Если он легкий – металлорежущие станки, вентиляторы, насосы, то пусковой ток в три раза выше номинального. Тяжелый пуск характерен для приводов, имеющих значительный момент инерции. Таковы, например, вертикальные конвейеры, пилорамы, прессы. Ток выше номинального в пять раз. Существует и особо тяжелый пуск, который сопровождает работу поршневых насосов, центрифуг, ленточных пил. Тогда Iном софтстартера должен быть в 8-10 раз больше.

Тяжесть пуска влияет и на время его завершения. Он может длиться от десяти до сорока секунд. За это время тиристоры сильно нагреваются, поскольку рассеивают часть электрической мощности. Для повторения им надо остыть, а на это уходит столько же, сколько на рабочий цикл. Поэтому если технологический процесс требует частого включения-выключения, то выбирайте софтстартер как для тяжелого пуска. Даже если ваше устройство не нагружено и легко набирает обороты.

Количество фаз

Можно управлять одной, двумя или тремя фазами. В первом случае устройство в большей степени смягчает рост пускового момента, чем тока. Чаще всего используются двухфазные пускатели. А для случаев тяжелого и особо тяжелого пуска – трехфазные.

Обратная связь

УПП может работать по заданной программе – увеличить напряжение до номинала за указанное время. Это наиболее простое и распространенное решение. Наличие обратной связи делает процесс управления более гибким. Параметрами для нее служат сравнение напряжения и вращающего момента или фазный сдвиг между токами ротора и статора.

Функциональность

Возможность работать на разгон или торможение. Наличие дополнительного контактора, который шунтирует ключевую схему и позволяет ей остыть, а также ликвидирует несимметричность фаз из-за нарушения формы синусоиды, которое приводит к перегреву обмоток.

Способ управления

Бывает аналоговым, посредством вращения потенциометров на панели, и цифровым, с применением цифрового микроконтроллера.

Дополнительные функции

Все виды защиты, режим экономии электроэнергии, возможность пуска с рывка, работы на пониженной скорости (псевдочастотное регулирование).

Правильно подобранный УПП увеличивает вдвое рабочий ресурс электродвигателей, экономит до 30 процентов электроэнергии.

Зачем нужно устройство плавного пуска (софтстартера)

Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска (софтстартер). С чем это связано? В нашей статье мы постараемся осветить этот вопрос.

Асинхронные двигатели используются уже более ста лет, и за это время относительно мало изменилось их функционирование. Запуск этих устройств и связанные с ним проблемы хорошо известны их владельцам. Пусковые токи приводят к просадкам напряжения и перегрузкам проводки, вследствие чего:

— некоторая электротехника может самопроизвольно отключаться;

— возможен сбой оборудования и т. д.

Своевременно установленный приобретенный и подключенный софтстартер позволяет избежать лишних трат денег и головной боли.

Читайте так же:
Регулировка давления в компрессоре jas 1203

Что такое пусковой ток

В основе принципа действия асинхронных двигателей лежит явление электромагнитной индукции. Наращивание обратной электродвижущей силы (э. д. с), которая создается путем применения изменяющегося магнитного поля во время запуска двигателя, приводит к переходным процессам в электрической системе. Этот переходной режим может повлиять на систему электропитания и другое оборудование, подключенное к нему.

Во время запуска электродвигатель разгоняется до полной скорости. Продолжительность начальных переходных процессов зависит от конструкции агрегата и характеристик нагрузки. Пусковой момент должен быть наибольшим, а пусковые токи – наименьшими. Последние влекут за собой пагубные последствия для самого агрегата, системы электроснабжения и оборудования, подключенного к нему.

В течение начального периода пусковой ток может достигать пяти-восьмикратного тока полной нагрузки. Во время пуска электродвигателя кабели вынуждены пропускать больше тока, чем во время периода стабильного состояния. Падение напряжения в системе также будет намного больше при пуске, чем во время стабильной работы – это становится особенно очевидным при запуске мощного агрегата или большого числа электродвигателей одновременно.

Способы защиты электродвигателя

Поскольку использование электродвигателей стало широко распространенным, преодоление проблем с их запуском стало проблемой. На протяжении многих лет для решения этих задач были разработано несколько методов, каждый из которых имеет свои преимущества и ограничения.

В последнее время были достигнуты значительные успехи в использовании электроники в регулировании электроэнергии для двигателей. Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска. Всё дело в том, что прибор имеет ряд особенностей.

Особенностью устройства пуска является то, что он плавно подаёт на обмотки двигателя напряжение от нуля до номинального значения, позволяя двигателю плавно разгоняться до максимальной скорости. Развиваемый электродвигателем механический момент пропорционален квадрату приложенного к нему напряжения.

В процессе пуска УПП постепенно увеличивает подаваемое напряжение, и электромотор разгоняется до номинальной скорости вращения без большого момента и пиковых скачков тока.

Виды устройств плавного пуска

На сегодняшний день для плавного запуска техники используются три типа УПП: с одной, двумя и со всеми управляемыми фазами.

Первый тип применяется для однофазного двигателя для обеспечения надежной защиты от перегрузки, перегрева и снижения влияния электромагнитных помех.

Как правило, схема второго типа помимо полупроводниковой платы управления включает в себя байпасный контактор. После того как двигатель раскрутится до номинальной скорости, байпасный контактор срабатывает и обеспечивает прямую подачу напряжения на электродвигатель.

Трехфазный тип является самым оптимальным и технически совершенным решением. Он обеспечивает ограничение тока и силы магнитного поля без перекосов по фазам.

Зачем же нужно устройство плавного пуска?

Благодаря относительно невысокой цене популярность софтстартеров набирает обороты на современном рынке промышленной и бытовой техники. УПП для асинхронного электродвигателя необходимо для продления его срока службы. Большим преимуществом софтстартера является то, что пуск осуществляется с плавным ускорением, без рывков.

Есть отличная альтернатива устройству плавного пуска. Стоимость отличается, но и функциональные возможности расширенные.

Преобразователь частоты – это решение задачи, когда требуется регулирование скорости электродвигателя и автоматизация работы технологичного оборудования через обратную связь посредством датчика. При помощи преобразователя Вы сможете решить более сложные и разносторонние вопросы по автоматизации электропривода.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Советы и рекомендации

Необходимо учитывать, что электрическая система пуска двигателей обычно предполагает то, что мощность АКБ и стартера будут практически одинаковыми. Это значит, что напряжение аккумулятора в значительной степени меняется с учетом того тока, который потребляет стартер.

Простыми словами, на эффективность и легкость запуска ДВС сильно влияет общее состояние АКБ, температура аккумулятора, уровень заряда, а также исправность стартера и стартерной цепи. Диагностировать некоторые проблемы на раннем этапе позволяют такие признаки, как явное затухание габаритов и подсветки панели приборов в момент пуска двигателя.

Магнитола отключается при запуске двигателя Рекомендуем также прочитать статью о том, почему магнитола отключается при запуске двигателя автомобиля. Из этой статьи вы узнаете о причинах отключения ГУ во время пуска, а также в каких случаях такое отключение является признаком возможных неисправностей.

Как известно, яркость ламп зависит от напряжения в бортовой сети. При этом нормально работающая система пуска не должна сильно «просаживать» напряжение. Отметим, что в норме допускается снижение яркости приборной панели и, в ряде случаев, перезапуск магнитолы, однако яркость не должна сильно понижаться.

Читайте так же:
Не запускается служба синхронизации времени

Еще отметим, что в случае проблем с запуском, которые связаны со стартером, некоторые водители привыкли стучать по данному устройству. Дело в том, что такие постукивания на старых моделях стартеров (например, на «классике» ВАЗ) в некоторых случаях позволяли сместить щетки стартера, ротора и т.д. В результате удавалось на короткое время восстановить работоспособность устройства.

При этом важно понимать, что современные стартеры в своем устройстве имеют постоянные магниты. Указанный магниты весьма хрупкие, то есть после удара по стартеру происходит их раскалывание.

В конечном итоге цельный магнит разрушается. Более того, такие магниты на некоторых моделях стартеров могут быть просто приклеены к корпусу. Соответственно, если ударять по корпусу сильно, отколовшиеся части магнита попадают на ротор или в область установки подшипников, полностью выводя стартер из строя.

Ключ в замке зажигания, но стартер не реагирует

Почему стартер может не работать после поврота ключа в замке зажигания. Основные причины неисправностей стартера: бендикс, тяговое реле, щетки, обмотка.

Пуско зарядное устройство

Как быстро завести двигатель при разряженной АКБ. Особенности и преимущества использования автономного пускозарядного устройства. Советы при выборе бустера.

Необслуживаемый аккумулятор

Когда нужно заряжать необслуживаемый автомобильный аккумулятор. Как заряжать необслуживаемую АКБ зарядным устройством: сила тока, время зарядки. Советы.

Падает напряжение при запуске двигателя причины

Падает напряжение во время запуска двигателя автомобиля: основные причины. Диагностика возможных неисправностей, проверка генератора, стартера, АКБ и т.д.

Отключается магнитола при запуске двигателя причины

Почему в автомобиле отключается головное устройство (магнитола) при запуске двигателя. Основные причины отключения автомагнитолы, возможные неисправности.

Как снять блокировку запуска двигателя. Проверка случайной активации иммобилайзера и способы отключения. Диагностика возможных неисправностей сигнализации.

Сообщения об ошибке

Если показывается сообщение Не обнаружен ключ автомобиля , положите ключ в резервное считывающее устройство. Затем повторите запуск.

P5-2122-SPA Backup start place in tunnel console

Расположение резервного считывающего устройства в тоннельной консоли.

Примечание

Когда ключ помещается в резервное считывающее устройство, следите за тем, чтобы одновременно с ним там не находились другие ключи, металлические предметы или электронные устройства (например, мобильные телефоны, планшеты, ноутбуки или зарядные устройства). Несколько ключей, помещенных рядом в считывающее устройство, могут создавать взаимные помехи.

Если появляется сообщение Проверка системы запуска двигателя, подождите , повторите запуск после того, как сообщение погаснет.

Примечание

Пуск двигателя автомобиля с разряженным гибридным аккумулятором невозможен.

Предупреждение

Во время поездки ключ должен всегда находиться в автомобиле.

Предупреждение

Покидая автомобиль, обязательно берите с собой ключ и следите за тем, чтобы в электросистеме автомобиля было установлено положение зажигания – особенно, если в автомобиле находятся дети.

Примечание

Для определенных типов двигателей число оборотов на холостом ходу при холодном запуске может быть значительно выше, чем при обычном. Это сделано специально — для того, чтобы система могла как можно быстрее достичь нормальной рабочей температуры при минимизации выбросов выхлопных газов и ущерба для окружающей среды.

Система воздушного пуска двигателя

Система воздушного пуска является еще одним решением, которое позволяет прокручивать коленчатый вал ДВС. Для запуска мотора используется сжатый воздух. При этом такое пневматическое оборудование, как правило, на автомобилях и другой технике не используется, однако пусковые системы данного типа можно встретить на стационарных двигателях внутреннего сгорания.

Если говорить о конструкции, устройство системы воздушного пуска двигателя предполагает наличие следующих элементов:

  • воздушный баллон;
  • электроклапаны;
  • маслоотстойник;
  • обратный клапан;
  • воздухораспределитель;
  • пусковые клапаны;
  • трубопроводы;

Принцип работы системы воздушного запуска ДВС основан на том, что сжатый в воздушном баллоне воздух под давлением подается в коробку-распределитель, далее проходит через фильтры в редуктор и поступает к электропневмоклапану.

Далее необходимо нажать кнопку «пуск», после чего клапан открывается, затем воздух из воздухораспределителя проходит через пусковые клапаны и попадает в цилиндры двигателя, создавая давление и раскручивая коленвал. Когда обороты достигают нужной частоты, двигатель запускается.

Добавим, что такие силовые установки дополнительно оснащены электрической системой пуска от стартера, что позволяет завести агрегат в том случае, если с воздушным пуском, который является основным способом, имеются какие-либо проблемы или произошла поломка.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector