Atrium96.ru

Кузовной ремонт авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Отопительные системы с автоматической регулировкой

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Акционерным обществом "Центр методологии нормирования и стандартизации в строительстве" (АО "ЦНС")

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (протокол от 30 апреля 2019 г. N 118-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСO 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Госстандарт Республики Беларусь

4 Приказом Федерального агентства по техническому регулированию и метрологии от 31 октября 2019 г. N 849-ст межгосударственный стандарт ГОСТ 30815-2019 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2020 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

Что такое автоматика для газового котла

После того, как происходит запуск газового котла, контроль над его работой возлагается на специализированное устройство, которое начинает действовать в рамках заложенной в него программы. Одним из главных пунктов применения автоматики у газовых котлов является обеспечение безопасной работы устройства. А также все модели автоматически регулируют поддержание необходимого и заданного заранее режима температуры тепла в помещениях.

По своим функциональным возможностям автоматика на котлы газовые делится следующим образом:

  1. устройства, которые энергозависимые;
  2. устройства, в которых энергозависимыми являются приборы контроля.

В первом типе используются модели, которые требуют электрической энергии, они имеют довольно простую конструкцию и работают по принципу остаточности. От датчика, который контролирует температуру, называемого еще термодатчик, поступает импульсный сигнал, а клапан, работающий по электромагнитному принципу, следуя указаниям такого сигнала, закрывается и открывается, тем самым либо прерывая подачу газа, либо, наоборот, ее провоцируя.

Ко второму типу относятся энергозависимые устройства, работающие, исходя из свойств физически применяемого вещества, того, которое циркулирует внутри контура самого прибора.

Когда вещество нагревается, оно, расширяясь, создает внутри самого агрегата давление, которое повышается. А также, под влиянием повышенного давления, приходит в действие сам котел, который работает на газе. Когда понижается температура, соответственно, происходит сжимание, и цепочка работает в обратном действии.

Стационарная система отопления автомобиля с двигателем внутреннего сгорания (дизельным или бензиновым), в качестве источника тепла использует рабочий нагрев мотора.

У большинства отопительных систем вентилятор забора воздуха и теплообменник (радиатор печки) устанавливаются перед перегородкой моторного отсека. Отводящим и подводящим трубопроводами теплообменник соединен с системой охлаждения автомобильного двигателя. Атмосферный воздух, нагнетаемый вентилятором, при проходе через соты радиатора нагревается. После этого подогретый воздух проходит через салонный фильтр и по трубопроводам подается на вентиляционные дефлекторы салона.

схема охлаждения двигателя

Система охлаждения двигателя

У различных моделей авто дефлекторы располагаются в центральной консоли, в центре и по бокам «торпедо», под лобовым стеклом, могут выходить в ногах задних пассажиров. Обычная температура работающего двигателя в 90 градусов обеспечивает нагрев воздуха, подаваемого в салон, до 30 – 35 градусов.

Читайте так же:
Как отрегулировать холостой ход 6g72

Важным качеством отопительной системы становится регулировка подачи теплого воздуха. Сила подачи воздуха регулируется поворотом регулятора или нажатием кнопки с пиктограммой вентилятора (у систем кондиционирования).

Ручные регулировки направления воздуха в стороны заслонками дефлектора очень приблизительны. Гораздо точнее работают регулировки климатических установок. После установки водителем нужной температуры в бортовом компьютере, блок управления климат-контроля по температурным датчикам через сервоприводы автоматически регулирует положение открытия или закрытия заслонок.

отопитель салона авто

Устройство современного отопителя салона с кондиционером

Отопительные системы многих моделей авто могут использовать прямой и рециркуляционный режимы подачи нагретого воздуха. Режим рециркуляции работает при закрытой основной заслонке забора воздуха. В такой позиции втяжной вентилятор отопительной системы использует только объем воздуха из салона. При этом увеличивается температура воздуха, в салоне пропадают неприятные запахи дорожной пыли, автомобильных выхлопов.

Наиболее эффективно рециркуляционный режим работает в автоматических установках климат-контроля. Блок управления климатом, ориентируясь на показания газоанализаторов, автоматически включает режим рециркуляции при обнаружении вредных веществ в атмосферном воздухе. Так же автоматически режим рециркуляции отключается, если повышается процент углекислого газа в салоне от дыхания пассажиров.

Нужны регулировки

Скорость циркуляционного насоса

Есть очень простая регулировка — уменьшить скорость работы насоса. Но вот беда! Этот насос есть только в системах с принудительной циркуляцией. Кроме того, очень часто мотор работает уже на первой скорости, и уменьшать, как бы, уже и некуда! Остается только этот насос выключить вообще. Что при этом произойдет? Неизвестно. У меня, например, и при выключенном насосе сохраняется какая-то очень слабая циркуляция. Но, правда, более сильная циркуляция опять идет на второй этаж, а не на первый. Так что регулировка скоростью насоса существует, но есть серьезные нюансы и ко многим системам она практически неприменима!

Но зато можно сделать какой-то автомат, который бы выключал и включал насос автоматически при изменении температуры в доме или в отдельной комнате. Но это довольно сложная система, она связана с большим количеством электроники, проводов или беспроводных датчиков и вообще не очень понятно, на сколько уменьшится срок службы насоса и уменьшится ли вообще.

Ограничение циркуляции по ветвям отопления

Если наше отопление состоит из ветвей, и на каждой ветви есть вентиль, то первое, что приходит в голову, это уменьшить циркуляцию теплоносителя сразу на всем втором этаже. Мы идем к вентилю, отвечающему за второй этаж и перекрываем его. Не полностью, но так. примерно на восьмую часть оборота. И это может реально помочь и этим очень многие хозяева пользуются. Но вот беда! Очень скоро мы замечаем, что такая частая регулировка не нравится нашим вентилям. Они довольно быстро начинают течь. Кроме того, бывает так, что их очень трудно сдвинуть с места и становится страшно их сломать. Но деваться некуда и мы этим пользуемся. А это не совсем дальновидно и правильно! Надо еще помнить о том, что шаровой кран вообще не является регулирующей арматурой. У него должно быть всего два положения — включено и выключено и ни на какие регулировки он, вообще-то, конструктивно не рассчитан.

Аспект надежности вентилей

Сейчас расскажу интересную историю из собственной жизни. Я всегда был поклонником российского автопрома. Да и сейчас я тоже поклонник автоваза. У классических моделей есть крантик, который отвечает за доступ охлаждающей жидкости в специальный радиатор для отопления салона автомобиля. Этот крантик часто выходит из строя и течет. Поэтому в среде таких же любителей, как и я, бытует мнение, что этот крантик лучше не трогать. И у многих он либо всегда включен и народ парится летом с включенной печкой, либо всегда выключен, и приходится мерзнуть зимой. Но это, конечно, экстрим. Чаще всего крантик включают как можно позже, когда уже так холодно, что терпеть невозможно. Причем включают, естественно, сразу на максимум. Выключают соответственно, когда уже так жарко, что спина чешется. Эта известная ситуация с жигулевской печкой является притчей во языцех и именно она чаще всего является доказательством убогости российского автопрома.

Читайте так же:
Клапан для регулировки давления в котле

И вот случилось так, что мой очень хороший знакомый купил себе иномарку и отдал мне целую кучу запчастей, которые ему стали ненужны. Среди этих запчастей был и крантик для охлаждающей жидкости. Было это 10 лет назад. Я ездил тогда на Ниве. Нива была у меня заслуженная и раздолбанная. Доступ к крантику был очень легким. Он просто был виден и я решил, что поскольку у меня есть запасной и доступ к крантику настолько прост, что заменить его будет очень легко, я не буду его экономить и буду делать им то, для чего он и был создан. То есть я, когда утром ехал на работу, включал печку. Потом, когда салон нагревался, я немного уменьшал нагрев. Потом выключал его вообще. При поездке с работы домой поступал ровно так же. И что вы думаете? Сломался у меня крантик? Да ничуть не бывало! Я проездил на бедной машинке 250 тысяч километров за 12 лет и отвез ее на утилизацию своим ходом. Крантик я так и не сменил на ней ни разу.

К чему это я рассказал? А к тому, что у меня появились очень серьезные подозрения, что краны ломаются не потому, что ими пользуются, а потому, что ими как раз НЕ пользуются. С тех пор я часто не могу пройти мимо какого-нибудь вентиля, чтобы не покрутить его для тренировки. Заметил я, в связи с этим, какие-нибудь изменения к лучшему в их работе? Признаться, нет. Не заметил. Но я не унываю и надеюсь, что случится что-нибудь, что даст мне, наконец, возможность заключить — правильно мое подозрение или нет.

Регулировка ручными вентилями на радиаторах

Фотография

Есть схемы отопления, в которых можно регулировать температуру каждого радиатора. Удобно это? Ну конечно, это удобнее, чем закручивать целую ветвь отопления. Но, скажу честно, подходить к радиаторам все равно нужно довольно часто. Например, в случае с солнечной погодой и перегревом одной комнаты, надо уделить время отоплению несколько раз. Как минимум утром и вечером. Опять же мы натыкаемся на то, что вентиль, которым редко пользуются очень быстро начинает течь. После этого он уже не регулирует, ибо должен быть всегда в полностью открытом состоянии. Чтобы не тек.

Нет. Нужна, все-таки, автоматика! Нужна! Автоматика полезна не только тем, что ей не нужно уделять столько внимания, сколько ручным методам. Она еще и существенно экономит газ (не допускает перегрева комнат) и, кстати, постоянно тренирует вентили, что тоже очень важно.

Читайте так же:
Параметры регулировка развал схождения колес

Управление «умным» котлом

В ходе эксплуатации пользователи сталкиваются с тепловыми потерями. Их уровень меняется в зависимости от времени года, суток, скорости ветра, влажности, утепления дома. С ростом теплопотерь возникает потребность в повышенной теплоотдаче отопительного оборудования. В то же время иногда отсутствует необходимость в 100%-ном задействовании системы отопления. Управлять работой отопителей можно вручную, а можно при помощи автоматики.

Управляющий контроллер получает информацию с датчиков комнатной температуры, температуры теплых полов и т. д. Он корректирует интенсивность потребляемой энергии в зависимости от потребности абонента в тепловой энергии. Однако обычные котлы не очень оперативно реагируют на изменение условий окружающей среды. Скорость реакции зависит от степени инерционности системы. Большинство обычных котлов настроены на изменение температуры в «обратке». Если температура воды там понижается, поступает сигнал на повышение температуры в нагревателе. Если вода в обратке горячая, нагреватель понижает температуру.

Как правило, электрокотлы используют принудительную циркуляцию для перекачивания теплоносителя. Воду перекачивает насос, подключенный к блоку управления автоматикой. Самое простое решение для «умного» котла представлено термостатом. Потребитель выставляет желаемую температуру и система самостоятельно регулирует все процессы, необходимые для поддержания заданной температуры. Иногда предусмотрен таймер, который прогревает дом к приходу обитателей.

При достижении заданной температуры котёл отключается. Однако в отличие от обычных систем, можно вывести один или несколько датчиков наружу. Тогда умное устройство срабатывает на опережение — при понижении температуры окружающей среды, котел активируется и прогревает помещение ещё до того, как оно остынет. Таким образом, устройство работает очень гибко и адаптируется под условия окружающей среды.

Управлять котлом можно следующими способами:

1. Модуль управления (например, Vitotronic для газовых или Logamatic для твердотопливных котлов Viessmann). Функционал подобных систем представлен режимами: «холод» (нагрев теплоносителя и ГВС), «тепло» (применение только подогрева воды), «дежурный» (контролирует температуру, предотвращая замерзание системы). Модуль управления считывает информацию с датчиков и регулируется термостатом.

2. Программируемый термостат (Ecobee, Tado, Honeywell). Этот вариант подходит для тех обитателей, которые бывают дома периодически и хотят сэкономить. Термостат настраивают на определенные часы и интенсивность работы. При отсутствии жильцов система отопления будет работать в минимальном режиме, а ночью — выключаться везде, кроме спален. К термостату иногда прилагаются датчики движения. Они активируют отопление как только в дом кто-то входит. При этом выбирается режим «интенсив». Таким девайсом можно управлять по Wi-Fi.

3. GSM-управление. Этот тип управления больше подходит для координации действий нескольких устройств, включая ИК-обогреватели, конвекторы и иные распределённые отопительные установки. Такие системы лучше подходят для теплиц, гаражей, небольших производственных помещений и пр. Для поддержания температуры используют GSM-термометры, обмен данными с которыми осуществляется после отправки SMS. В случае аварийной ситуации установки отправляют тревожное сообщение. Продвинутые версии GSM-контроллеров также сообщают об уровне теплоносителя, давлении в системе, расходе энергии.

Что означает термин «терморегулятор»

Терморегулятор — это устройство, которое задействуется в системах отопления или кондиционирования для обеспечения установленного значения температуры нагреваемой среды: вода или воздух.

Схема подключения терморегулятора

Как правило, терморегулятор (ТР) выполняется в форме аппаратного модуля, который измеряет температуру среды и передает сигнал управляющему модулю на активизацию или прекращение процесса нагрева.

Таким образом, существует две исполнительные модификации терморегулятора:

  • Он выступает в роли самостоятельного устройства, имеющего функции по контролю и управлению процессом, например, контроль температуры и ее регулирование по проценту влажности в помещении;
  • в качестве аппаратного модуля в составе общей автоматики безопасности.
Читайте так же:
Устройства синхронизации времени это

Автоматизация системы отопления

Автоматизация системы отопления в многоквартирном доме в последнее время стала очень популярной. Вызвано это тем, что тарифы постоянно расту. Погодозависимая автоматика, позволяет экономить энергозатраты и поэтому становится востребованными.

Автоматизация системы отопления многоквартирного дома – это средство регулирования микроклимата в помещениях при температурных изменениях на улице. Как показывает практика, эти устройства системы отопления многоквартирного дома действительно полезны в регионах, где зимой случаются частые суточные перепады температур.

Подобные устройства оснащены программами, позволяющими заранее устанавливать необходимые параметры. Например, при — 10 нагрев батарей доходит до одного уровня, но когда на улице температура падает до -15 градусов – до другого, более горячего, и наоборот.

Там, где температурный режим зимой не подвержен резким перепадам, а держится примерно на одном уровне, погодозависимая автоматика не востребована.

автоматизация система отопления в многоквартирном доме

Автоматизация системы отопления: экономическая эффективность.

Проблема экономного расходования тепловой энергии в системах отопления многоквартирных домов в связи с ростом цен на энергоносители и соответственно платы за предоставление тепла приобретает все более весомое значение. В новом строительстве устанавливаются автоматизированные системы отопления. Автоматическое регулирование температурных параметров теплоносителя, установка в индивидуальном тепловом пункте дома автоматизированного узла управления.

В домах старой постройки проблема рационального использования тепла практически не решается, во-первых, из-за отсутствия технического и экономического обоснования необходимых работ, во-вторых, из-за нехватки или отсутствия финансовых ресурсов.

Хотя, самая большая статья расходов в платежах за коммунальные услуги это плата за отопление и горячие водоснабжение, она составляет около 60%. Производится в каждом месяце независимо от отопительного сезона. Это очень внушительная сумма, а тем более в регионах, где холодно большую часть года.

В связи с этим, особенно актуальной является задача, повышения эффективности работы существующих систем отопления и водоснабжения в многоквартирных домах. Одно из перспективных решений данной проблемы является установка приборов учета и внедрение автоматизированной системы отопления и регулирования, которая будет исключать необоснованный перерасход тепловой энергии.

Установка узла учета тепловой энергии позволяет перейти к расчетам за фактическое потребление энергии, а система автоматического регулирования тепла осуществляет сбережение тепловой энергии. Целью применения системы автоматизации и регулирования отопления является управление процессом пользования тепла согласно наружной температуре воздуха.

Это выполняется посредством повышения или понижения интенсивности потока носителя тепла в многоквартирных домах. Данный процесс зависит от реальных потребностей помещения в тепловой энергии в конкретный момент.

Применение автоматизированной системы отопления позволяет выделить следующие факторы экономии:

  • Снятие вынужденных «перетопов» в переходные, межсезонные периоды. Применение систем регулирования температуры отопления на тепловых пунктах позволяет достигнуть 30-40 % экономии в эти периоды отопления. Актуальность регулирования подачи теплоносителя в межсезонный период повышается в силу повышения общего значения положительных температур наружного воздуха в осенне-зимний период.
  • Снятие влияния на потери тепла инерции тепловой сети. Это значит, что температура в сетях не может быстро изменяться. Во многих районах России разница между дневными и ночными температурами может достигать 10-20 С. Тепловой инерции здания, как правило, не хватает для компенсации этих изменений. В результате, возможны «перетопы» в дневные часы. Следовательно, потери тепла или «недотопы» в ночные часы, что приводит к перерасходу более дорогой электроэнергии за счет включения бытовых нагревательных приборов. Этот фактор можно оценить только ориентировочно, в пределах 3-5 % общего теплопотребления.
  • Коррекция температурного графика по фактической производительности приборов отопления. То есть корректирование проектного температурного графика отопления здания с учетом устранения запасов, которые закладывают проектировщики при определении необходимой площади отопительных приборов. Эффект экономии от автоматизации теплового пункта в данном случае может составлять от 7 до 15 %.
  • Экономический эффект за счет применения графика качественного регулирования. При качественном регулировании все помещения находятся по теплу в равных условиях. Следовательно, может быть применено глубокое регулирование с наибольшим экономическим эффектом (вышесказанное относится к гидравлически отрегулированным системам). Так, к примеру, один градус перегрева в помещениях (т. е. 21°С вместо 20°С) равносилен почти 7 % потерь.
Читайте так же:
Назначение теплового зазора в клапанном механизме и регулировка

Таким образом, можно сделать выводы, что переход на автоматизированную систему отопления достаточно эффективен с экономической точки зрения. Низкие сроки окупаемости позволяют отнести этот способ экономии энергии к малозатратным и быстроокупаемым.

Погодозависимая автоматика: как она устроена.

Система управления отоплением на основе текущих погодных условий состоит из нескольких основных компонентов:

  • управляющий контроллер;
  • датчики температуры;
  • элеватор, или регулирующий клапан с насосом.

Принцип работы контроллера основан на анализе данных с четырех температурных датчиков:

  • внутри дома;
  • снаружи;
  • на прямом трубопроводе;
  • на возврате.

При увеличении или уменьшении температуры на улице контроллер дает команду исполнительным механизмам на закрытие или открытие и соответственно увеличение или уменьшение поступления горячей воды из тепловой сети. Автоматика анализирует все данные и по специальным алгоритмам рассчитывает необходимую температуру.

Алгоритм поддержания температуры в зависимости от температуры на улицы в многоквартирных домах уже встроен в автоматику контроллера. Его необходимо подстроить в зависимости от того какой дом. Допустим, дом кирпичный с толстыми стенами или панельный, у которого стены холодные. В старые панельные дома, очень не выгодно ставить теплосчетчики, у них очень холодные стены и вместо ожидаемой экономии, вы будете платить больше. Поэтому если в панельном доме стоит теплосчетчик, то чтобы экономить, необходимо установить погодозависимую автоматику.

Поддерживать определенную температуру в доме можно в зависимости от температуры в какой то одной из ее квартир, а в квартире в одной из комнат. Это должна быть средняя температура, и колебания ее должны быть минимальными. Лучше всего под эти условия подходит спальня или детская комната.

В процессе работы контроллер периодически, с определенным интервалом времени, опрашивает датчики температуры, измеряющие температуру теплоносителя, наружного воздуха и (или) воздуха внутри помещения при его наличии.

При увеличении или уменьшении температуры на улице контроллер дает команду исполнительному механизму элеватора (шаговому двигателю) на закрытие или открытие и соответственно увеличение или уменьшение поступления теплоносителя из тепловой сети. Шаговый двигатель приводит в движение конусную иглу, которая, перемещаясь, уменьшает или увеличивает площадь прохода теплоносителя.

В результате в элеватор и соответственно в систему отопления квартир поступает больше охлажденного (использованного) теплоносителя из обратного трубопровода, если необходимо уменьшить температуру. Или меньше, если необходимо температуру в систему отопления дома увеличить.

Если вы решили датчик воздуха в помещении не устанавливать, автоматизированная система отопления поддерживает температуру по температурному графику.

Автоматизированная система отопления гарантированно окупается в многоэтажных домах и больших коттеджах. В небольших частных домах экономическая эффективность сильно варьируется в зависимости от местных условий.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector