Atrium96.ru

Кузовной ремонт авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Растительная клетка; определение, части и функции

Животные, грибы и у протистов тоже есть эукариотические клетки, пока бактерии и археи имеют более простые прокариотические клетки. Клетки растений отличаются от клеток других организмов своими клеточные стенки хлоропласты и центральная вакуоль, Хлоропласты в растительных клетках могут подвергаться фотосинтезу с образованием глюкозы. При этом клетки используют углекислый газ и выделяют кислород.

Другие организмы, такие как животные, полагаются на кислород и глюкозу, чтобы выжить. Растения считаются аутотропный потому что они производят свою еду и не должны потреблять никаких других организмов. В частности, растительные клетки фотоавтотрофного потому что они используют световую энергию солнца для производства глюкозы. Организмы, которые питаются растениями и другими животными, считаются гетеротрофными.

Другие компоненты растения клетка, клеточная стенка а также центральная вакуоль работать вместе, чтобы придать клетке жесткость. Растительная клетка будет хранить воду в центральной вакуоль, который расширяет вакуоль в стороны клетки. Затем клеточная стенка прижимается к стенкам других клеток, создавая силу, известную как тургор давление, Тургорское давление между клетками растения могут расти и достигать большего солнечного света.

Закон Паскаля для гидростатики.

В 1653 году французским ученым Б. Паскалем был открыт закон, который принято называть основным законом гидростатики.

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Закон Паскаля легко понимается если взглянуть на молекулярное строение вещества. В жидкостях и газах молекулы обладают относительной свободой, они способны перемещаться друг относительно друга, в отличии от твердых тел. В твердых телах молекулы собраны в кристаллические решетки.

Относительная свобода, которой обладают молекулы жидкостей и газов, позволяет передавать давление производимое на жидкость или газ не только в направлении действия силы, но и во всех других направлениях.

Закон Паскаля для гидростатики нашел широкое распространение в промышленности. На этом законе основана работа гидроавтоматики, управляющей станками с ЧПУ, автомобилями и самолетами и многих других гидравлических машин.

Определение и формула гидростатического давления

Из описанного выше закона Паскаля вытекает, что:

Величина гидростатического давления не зависит от формы сосуда, в котором находится жидкость и определяется произведением

g – ускорение свободного падения

h – глубина, на которой определяется давление.

Гидростатическое давление в сосуде

Для иллюстрации этой формулы посмотрим на 3 сосуда разной формы.

Во всех трёх случаях давление жидкости на дно сосуда одинаково.

Полное давление жидкости в сосуде равно

P0 – давление на поверхности жидкости. В большинстве случаев принимается равным атмосферному.

Сила гидростатического давления

Выделим в жидкости, находящейся в равновесии, некоторый объем, затем рассечем его произвольной плоскостью АВ на две части и мысленно отбросим одну из этих частей, например верхнюю. При этом мы должны приложить к плоскости АВ силы, действие которых будет эквивалентно действию отброшенной верхней части объема на оставшуюся нижнюю его часть.

Гидростатическое давление на точку

Рассмотрим в плоскости сечения АВ замкнутый контур площадью ΔF, включающий в себя некоторую произвольную точку a. Пусть на эту площадь воздействует сила ΔP.

Тогда гидростатическое давление формула которого выглядит как

представляет собой силу, действующую на единицу площади, будет называться средним гидростатическим давлением или средним напряжением гидростатического давления по площади ΔF.

Истинное давление в разных точках этой площади может быть разным: в одних точках оно может быть больше, в других – меньше среднего гидростатического давления. Очевидно, что в общем случае среднее давление Рср будет тем меньше отличаться от истинного давления в точке а, чем меньше будет площадь ΔF, и в пределе среднее давление совпадет с истинным давлением в точке а.

Читайте так же:
Схема регулировки оборотов перфоратора

Для жидкостей, находящихся в равновесии, гидростатическое давление жидкости аналогично напряжению сжатия в твердых телах.

Единицей измерения давления в системе СИ является ньютон на квадратный метр (Н/м 2 ) – её называют паскалем (Па). Поскольку величина паскаля очень мала, часто применяют укрупненные единицы:

килоньютон на квадратный метр – 1кН/м 2 = 1*10 3 Н/м 2

меганьютон на квадратный метр – 1МН/м 2 = 1*10 6 Н/м 2

Давление равное 1*10 5 Н/м 2 называется баром (бар).

В физической системе единицей намерения давления является дина на квадратный сантиметр (дина/м 2 ), в технической системе – килограмм-сила на квадратный метр (кгс/м 2 ). Практически давление жидкости обычно измеряют в кгс/см 2 , а давление равное 1 кгс/см 2 называется технической атмосферой (ат).

Между всеми этими единицами существует следующее соотношение:

1ат = 1 кгс/см 2 = 0,98 бар = 0,98 * 10 5 Па = 0,98 * 10 6 дин = 10 4 кгс/м 2

Следует помнить что между технической атмосферой (ат) и атмосферой физической (Ат) существует разница. 1 Ат = 1,033 кгс/см 2 и представляет собой нормальное давление на уровне моря. Атмосферное давление зависит от высоты расположения места над уровнем моря.

Измерение гидростатического давления

Гидростатическое давление одинаково

На практике применяют различные способы учета величины гидростатического давления. Если при определении гидростатического давления принимается во внимание и атмосферное давление, действующее на свободную поверхность жидкости, его называют полным или абсолютным. В этом случае величина давления обычно измеряется в технических атмосферах, называемых абсолютными (ата).

Часто при учете давления атмосферное давление на свободной поверхности не принимают во внимание, определяя так называемое избыточное гидростатическое давление, или манометрическое давление, т.е. давление сверх атмосферного.

Манометрическое давление определяют как разность между абсолютным давлением в жидкости и давлением атмосферным.

Рман = Рабс – Ратм

и измеряют также в технических атмосферах, называемых в этом случае избыточными.

Случается, что гидростатическое давление в жидкости оказывается меньше атмосферного. В этом случае говорят, что в жидкости имеется вакуум. Величина вакуума равняется разнице между атмосферным и и абсолютным давлением в жидкости

Рвак = Ратм – Рабс

и измеряется в пределах от нуля до атмосферы.

Свойства гидростатического давления

Свойства гидростатического давления

Гидростатическое давление воды обладает двумя основными свойствами:
Оно направлено по внутренней нормали к площади, на которую действует;
Величина давления в данной точке не зависит от направления (т.е. от ориентированности в пространстве площадки, на которой находится точка).

Первое свойство является простым следствием того положения, что в покоящейся жидкости отсутствуют касательные и растягивающие усилия.

Предположим, что гидростатическое давление направлено не по нормали, т.е. не перпендикулярно, а под некоторым углом к площадке. Тогда его можно разложить на две составляющие – нормальную и касательную. Наличие касательной составляющей из-за отсутствия в покоящейся жидкости сил сопротивления сдвигающим усилиям неизбежно привело бы к движению жидкости вдоль площадки, т.е. нарушило бы её равновесие.

Поэтому единственным возможным направлением гидростатического давления является его направление по нормали к площадке.

Если предположить что гидростатическое давление направлено не по внутренней, а по внешней нормали, т.е. не внутрь рассматриваемого объекта а наружу от него, то вследствие того, что жидкость не оказывает сопротивления растягивающим усилиям – частицы жидкости пришли бы в движение и её равновесие было бы нарушено.

Читайте так же:
На мониторе постоянно выскакивает автоматическая регулировка

Следовательно, гидростатическое давление воды всегда направлено по внутренней нормали и представляет собой сжимающее давление.

Из этого же правило следует, что если измениться давление в какой-то точке, то на такую же величину измениться давление в любой другой точке этой жидкости. В этом заключается закон Паскаля, который формулируется следующим образом: Давление производимое на жидкость, передается внутри жидкости во все стороны с одинаковой силой.

На применение этого закона основываются действие машин, работающих под гидростатическим давлением.

Ещё одним фактором влияющим на величину давления является вязкость жидкости, которой до недавнего времени приято было пренебрегать. С появлением агрегатов работающих на высоком давлении вязкость пришлось так же учитывать. Оказалось, что при изменении давления, вязкость некоторых жидкостей, таких как масла, может изменяться в несколько раз. А это уже определяет возможность использовать такие жидкости в качестве рабочей среды.

Физиологическая роль основных ионов в организме ребенка

Evidence-Based Practice

В организме взрослого человека содержится 70-100 г натрия, у детей его содержание ниже. Он обнаруживается во всех тканях в виде катионов натрия. Содержание натрия в плазме крови 130-150 ммоль/л (биохимический анализ крови ребенку, детская поликлиника «Маркушка»).

Натрий — главный внеклеточный катион: на его долю приходится более 90 % всех катионов плазмы. Около 85 % ионов натрия представлено в свободной форме и приблизительно 15 % его удерживается белками.

Натрий создает и поддерживает осмотическое давление жидкостей организма (преимущественно внеклеточной), задерживает воду в организме, участвует во всасывании в кишечнике и реабсорбции в почках глюкозы и аминокислот. Натрий участвует в регуляции кислотно-щелочного состояния организма, является щелочным резервом крови, активатором некоторых ферментов. Содержание натрия в клеточной микросреде определяет величину мембранного потенциала и, соответственно, возбудимость клеток. Совместно с ионами калия натрий стимулирует АТФазную активность фракций клеточных мембран, стабилизирует симпатический отдел нервной системы, принимает участие в регуляции тонуса сосудов.

Основное количество натрия поступает в организм с поваренной солью, небольшое количество его ребенок потребляет в виде бикарбоната натрия, цитрата, сульфата и глутамата натрия, которые как добавки встречаются в продуктах питания. Суточная потребность ребенка в натрии составляет в среднем 1,5-2,0 ммоль/л.

Основное количество натрия (около 95 %) выводится почками с мочой в виде натриевых солей фосфорной, серной, угольной и других кислот. Натрий выводится также с потом и через кишечник. Дефицит или избыток натрия вызывают серьезные изменения в организме ребенка.

Калий. Внутриклеточный катион

В отличие от натрия является внутриклеточным катионом. У взрослых содержание калия составляет приблизительно 53 ммоль/л и 95 % его обменивается. Уровень калия в организме ребенка ниже. Основное количество калия (90 %) находится внутри клеток в виде непрочных соединений с белками, углеводами и фосфором.Часть калия содержится в клетках в ионизованном виде и обеспечивает мембранный потенциал.

Суточная потребность ребенка в калии — 1,5-2,0 ммоль/л. Основным пищевым источником калия являются продукты растительного происхождения. Из организма калий выводится преимущественно почками (80—90 %), в меньшей степени пищеварительным трактом и потовыми железами. Основным регулятором выведения его с мочой является альдостерон.

Калий участвует в ряде жизненно важных физиологических процессов: вместе с натрием создает и поддерживает осмотическое давление жидкостей организма (преимущественно внутриклеточной), участвует в регуляции кислотно-щелочного состояния организма. Калий — активатор ряда ферментов, вместе с катионом натрия формирует электрохимический потенциал в мембранах клеток. Уровень калия в клетках и внеклеточной среде играет важнейшую роль в деятельности сердечно-сосудистой, мышечной и нервной систем, в секреторной и моторной функциях пищеварительного тракта, экскреторной функции почек. Обычно выход калия из клеток зависит от увеличения их биологической активности, распада белка и гликогена, недостатка кислорода. Дефицит и избыток калия вызывают серьезные изменения в организме ребенка.

Читайте так же:
Регулировка клапанов ттр 250 какие зазоры

Кальций. Внутриклеточный и в костной ткани

В различных тканях содержится внутриклеточно и почти исключительно в форме растворимых белковых комплексов. Лишь в костной ткани, включающей до 97 % всех запасов кальция в организме, он находится главным образом в виде нерастворимых внеклеточных включений гидроксиапатита.

Содержание кальция в организме у детей составляет около 200 ммоль/л, у взрослых — 475 ммоль/л. Содержание кальция в крови поддерживается в норме в диапазоне 2,5-2,8 ммоль/л.

Основной источник кальция — продукты питания: молоко и молочные продукты, яйца, бобовые, сухофрукты и др. Для детей грудного возраста основной источник кальция — молоко.У взрослого человека поддерживается нулевой баланс кальция, у детей — положительный.

Кальций участвует в физиологических процессах только в ионизованном виде. Кальций — необходимый участник процесса мышечного сокращения, важнейший компонент свертывающей системы крови (превращения протромбина в тромбин, фибриногена в фибрин, способствует агрегации тромбоцитов), как кофактор или активатор участвует в работе многих ферментов. Кальций входит в состав костей и хрящей в форме апатитов, является стабилизатором клеточных мембран, регулирует возбудимость нервов и мышц. Кальций — внутриклеточный посредник в действии некоторых гормонов на клетку, универсальный триггер многих секреторных процессов. Ионизация кальция зависит от рН крови. При ацидозе содержание ионизованного кальция повышается, а при алкалозе падает. Алкалоз и снижение уровня кальция ведут к резкому повышению нейромышечной возбудимости.

Магний. Внутриклеточный и в костной ткани

Как и калий, является основным внутриклеточным катионом (его концентрация в клетках значительно выше, чем во внеклеточной среде). Общее количество магния в организме у детей составляет 11 ммоль/л, у взрослых — 14 ммоль/л. Половина всего магния находится в костях (1/3 этого количества свободно обменивается), 49 % — в клетках мягких тканей, он играет существенную роль во многих ферментативных реакциях, в том числе в активации АТФ-азы. Уровень магния в крови составляет 0,75-0,9 ммоль/л, при этом более 60 % катиона находится в ионизованном виде.

Суточная потребность в магнии взрослого человека составляет около 300 мг. Овощи с зелеными листьями и фрукты, бобовые и злаки, мясо являются основными пищевыми источниками магния. Значительное количество эндогенного магния поступает в пищеварительный тракт с пищеварительными секретами. Главным регулятором содержания магния в организме являются почки. При недостатке его в организме он полностью реабсорбируется почками.

Магний — структурный элемент костной ткани. Он стабилизирует биологические мембраны, уменьшая их текучесть и проницаемость. Образуя хелаты с нуклеиновыми кислотами, он стабилизирует структуры ДНК, ассоциации субъединиц рибосом, связанные транспортными РНК с рибосомой. Магний входит в состав более 300 разных ферментных комплексов, обеспечивая их активность. Катион магния уменьшает возбудимость нервно-мышечной системы, сократительную способность миокарда и гладких мышц сосудов, оказывает депрессивное действие на психические функции.

При дефиците магния повышается возбудимость ЦНС, что проявляется слабостью и расстройством психики (спутанность сознания, беспокойство и агрессивность), возникновением судорог.

Повышение уровня магния в плазме (более 1,5 ммоль/л) вызывает тошноту и рвоту. Высокие концентрации магния могут вызвать гипотензию.

Читайте так же:
Синхронизация карбюраторов suzuki desperado

Хлор. Основной анион внеклеточной жидкости

Главным анионом внеклеточной жидкости является хлор, в организме он находится преимущественно в ионизованном состоянии (хлорид-анион) в форме солей натрия, калия, кальция, магния и т. д. Общее количество хлора в организме составляет 33 ммоль/кг. Распределение хлоридов в жидкостях организма определяется распределением ионов натрия. В крови хлориды встречаются главным образом в виде натрия хлорида. Концентрация хлора в плазме крови в норме колеблется от 90 до 105 ммоль/л, 90 % аниона хлора находится во внеклеточной жидкости. Суточная потребность хлора (2-4 г) полностью покрывается пищевой поваренной солью.

Хлориды участвуют в создании и поддержании осмотического давления жидкостей организма, в синтезе соляной кислоты в желудке. Хлориды также участвуют в генерации электрохимического градиента на плазматических мембранах клеток, являются активаторами ряда ферментов.

Изменение концентрации хлора в крови приводит соответственно к изменению концентрации натрия. Однако иногда изменение концентрации хлора не сопровождается эквивалентными изменениями концентрации натрия. Избыток хлора ведет к ацидозу.

Фосфор. Исключительно большое биологическое значение для растущего организма

Около 70 % фосфора сосредоточено в костной ткани, он входит в состав межклеточной жидкости и активных биохимических соединений каждой клетки организма. Фосфаты являются основными анионами внутриклеточной жидкости, где концентрация их выше, чем во внеклеточной среде, в 40 раз. Содержание неорганического фосфора в крови составляет 0,94-1,60 ммоль/л, у детей первого года жизни — 1,26-2,26 ммоль/л.

Потребность в фосфатах взрослого человека — около 1200 мг/сут. Фосфор в достаточном количестве присутствует в пищевом рационе, так как содержится практически во всех пищевых продуктах и всасывается (около 50 %) в виде неорганических фосфатов.

Фосфаты — необходимый компонент клеточных мембран, играют ключевую роль в метаболических процессах, входя в состав многих коферментов, нуклеиновых кислот и фосфопротеидов.

Фосфат — структурный компонент костей и зубов в виде апатитов, участвует в регуляции концентрации водородных ионов (фосфатная буферная система), важнейший компонент фосфорорганических соединений организма: нуклеотидов, нуклеиновых кислот и фосфопротеидов, фосфолипидов и др. Органические соединения фосфора (АТФ, АДФ) составляют основу энергетического обмена.

Избыток фосфора в организме встречается редко и наблюдается при нарушении функции почек или гипофункции паращитовидных желез. Это приводит к гипокальциемии и нарушению метаболизма костной ткани. Проявлениями недостатка фосфора являются ломкость костей, нарушение диссоциации оксигемоглобина, слабость, миопатия, кардиомиопатия.

Сульфаты, бикарбонаты

Сульфаты в большем количестве содержатся во внутриклеточном пространстве, входят в состав многих биологически активных веществ. Сульфаты необходимы для обезвреживания токсических соединений в печени.

Ион бикарбоната в наибольшем количестве содержится в экстрацеллюлярной жидкости. Ион бикарбоната находится в динамическом равновесии с угольной кислотой и является компонентом основной буферной системы организма.

На какой глубине давление опасно?

Поскольку каждые 10 метров показатель увеличивается на одну единицу, организм человека выдерживает только определенную глубину. При погружении сердцебиение замедляется примерно на 20%, а при частом нырянии еще больше. Из-за этого в организме снижается уровень потребления кислорода. В такой ситуации организм рефлекторно защищает легкие от попадания воды и повышает давление.

В этот период кровь приливает к жизненно важным органам, чтобы защитить их от высокого давления. Также повышается гемоглобин, чтобы формировались запасы кислорода. Рефлекс появляется даже в том случае, если не нырять, а просто опустить голову в прохладную воду.

Читайте так же:
Регулировка развала на логане

глубина погружения для человека

Организм пытается предотвратить влияние прессинга, но полностью защититься от него он не может. Уже на глубине 3 м диафрагма неспособна в достаточной мере расширить легкие, чтобы они раскрылись и сделали вдох. У дайверов эта проблема решается тем, что воздух подается под тем же давлением, что и в окружающей среде.

Компенсировать прессинг удается только примерно до 60 метров, на этой глубине давление уже равняется 5 атмосферам. После этого воздух становится еще плотней, поэтому даже при возможности дыхания на этот процесс у человека уходят все силы. В таблице показаны остальные показатели давления и глубина погружения при этом.

5 атмосфер в таблице

Поскольку при погружении прирост давления неодинаковый и снижается он медленно, у человека остается достаточно времени, чтобы подняться повыше. Если этого не сделать, то кислород станет токсичным и вызовет отравление, которое спровоцирует судороги, тошноту, головную боль.

Вода движется по растениям вверх благодаря разности собственного потенциала

Направленное движение воды через плазмалемму обеспечивает разность потенциалов воды в корне и на поверхности устьиц. Потенциал воды – это вид свободной энергии. Именно градиент водного потенциала является решающей силой в определении направления движения жидкости. Жидкость движется от места большей концентрации к тому месту, где она меньше. Потенциал воды измеряется в единицах, называемых мегапаскалями (МПа).

Как вода движется по растениям вверх: корневое питание фото

Корневое питание растения

Некоторые предыдущие концепции, чтобы понять тургор в биологии

осмос

Вода, жизненно важный элемент для всех живых существ, обладает физическими свойствами, которые отражаются на клеточном уровне в том, как она переносится из одной клетки в другую, а также входит и выходит из внутриклеточной среды во внешнюю среду..

Этот процесс называется осмосом и состоит из диффузии воды и минералов через относительно проницаемую мембрану из области более высокой концентрации в более низкую концентрацию..

Когда клетка находится в нормальном состоянии, концентрация внеклеточной и внутриклеточной жидкости такая же, как и баланс между внутренней средой и внешней средой..

Когда клетка подвергается воздействию гипертонической среды, внутренняя вода пластыря имеет тенденцию выходить, чтобы сбалансировать степень концентрации внешней среды с внутренней частью клетки, вызывая плазмолиз..

плазмолиз

В отличие от тургора, это явление происходит, когда клетки, теряя воду, сжимаются, отделяя протопласт от клеточной стенки. Плазмолиз обусловлен полупроницаемостью цитоплазматической мембраны и проницаемостью клеточной стенки у растений..

Это связано с тем, что условия внеклеточной среды являются гипертоническими, то есть вода, содержащаяся в вакуоле, выходит из гипертонической среды (осмос), обезвоживающей клетку..

Наконец, стенка клеточной мембраны отделяется, потому что клетка плазмолизуется. Если во время этого процесса растение не получает воды для заполнения вакуоли, чтобы клетка восстановила свой тургор, наиболее вероятно, что растение погибнет.

Как обычно структурируют воду в домашних условиях

Вода структурируется, а точнее обретает особую регулярную структуру при воздействии некоторых факторов, от которых зависят способы ее приготовления и жизненный цикл регулярной структуры. Например,

  1. при замораживании-оттаивании воды (талая вода, где сохраняются “ледяные” кластеры)
  2. при воздействии электрического поля (электролиз)
  3. при воздействии постоянного магнитного поля (магниты)
  4. при химических воздействиях (магниевый стержень ViloVit)
  5. при механических воздействиях, происходит незначительное изменение структуры (встряхивание, перемешивание, течение в различных режимах)

Полученная структурированная вода становиться активной и несет полезные свойства для всего организма.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector